**************************************************************************************** Smithsonian/USGS Weekly Volcanic Activity Report 20-26 March 2013
Sally Kuhn Sennert - Weekly Report Editor URL: http://www.volcano.si.edu/reports/usgs/
New Activity/Unrest: | Fuego, Guatemala | Hekla, Southern Iceland | Tungurahua, Ecuador
Ongoing Activity: | Bagana, Bougainville | Batu Tara, Komba Island (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaii (USA) | Kizimen, Eastern Kamchatka (Russia) | Lokon-Empung, Sulawesi | Paluweh, Lesser Sunda Islands (Indonesia) | Popocatépetl, México | Sakura-jima, Kyushu | Santa María, Guatemala | Shiveluch, Central Kamchatka (Russia) | Tolbachik, Central Kamchatka (Russia)
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
New Activity/Unrest
FUEGO Guatemala 14.473°N, 90.880°W; summit elev. 3763 m
In a special notice on 20 March, INSIVUMEH reported that lava fountains rising 300-400 m above Fuego's crater during the night had decreased along with seismicity and rumbling noises. A lava flow was 1.5 km long in the Ceniza drainage (SSW), and ash plumes drifted SE and S. Explosions during 20-21 and 25-26 March generated ash plumes that rose 0.6-1.2 km and drifted SE, S, and W. Incandescent material was ejected from the crater. Lava flows remained active in the Ceniza drainage and traveled 600 m SW down the Taniluya drainage. Explosions produced ash plumes that rose 400-800 m above the crater and drifted E and W during 21-22 March, rose 300-500 m and drifted 5 km W and NW during 23-24 March, and rose 450 m and drifted W and NW during 24-26 March, which caused ashfall in Panimache I and II (8 km SW), Morelia (9 km SW), and Hagia Sophia.
Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3,763-m-high Fuego and its twin volcano to the N, Acatenango. Construction of Meseta volcano continued until the late Pleistocene or early Holocene, after which growth of the modern Fuego volcano continued the southward migration of volcanism that began at Acatenango. Frequent vigorous historical eruptions have been recorded at Fuego since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows. The last major explosive eruption from Fuego took place in 1974, producing spectacular pyroclastic flows visible from Antigua.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/
HEKLA Southern Iceland 63.98°N, 19.70°W; summit elev. 1491 m
The Icelandic Meteorological Office noted that since 10 March, at least seven micro-earthquakes at Hekla, ranging in size from M 0.4 to 1, had been detected within a small area about 4.5 km NE of the summit, at depths of 11-12 km. These earthquakes were high-frequency, suggestive of brittle fracturing rather than magma movement. At Hekla, such a clustering of earthquakes is unusual in between eruptions. Continuous measurements of borehole strain and ground-based GPS showed no changes in crustal deformation.
On 26 March the Icelandic Meteorological Office increased the Aviation Colour Code from Green to Yellow, because of the increased seismic activity. Icelandic Civil Defense together with the Police in Hvolsvöllur had also declared a level of uncertainty for Hekla, although there were no observable signs that an eruption of Hekla was imminent.
Geologic Summary. One of Iceland's most prominent and active volcanoes, Hekla lies near the southern end of the eastern rift zone. Hekla occupies a rift-transform junction, and has produced basaltic andesites, in contrast to the tholeiitic basalts typical of Icelandic rift zone volcanoes. Vatnafjöll, a 40-km-long, 9-km-wide group of basaltic fissures and crater rows immediately SE of Hekla forms a part of the Hekla-Vatnafjöll volcanic system. A 5.5-km-long fissure, Heklugjá, cuts across the 1491-m-high Hekla volcano and is often active along its full length during major eruptions. Repeated eruptions along this rift, which is oblique to most rifting structures in the eastern volcanic zone, are responsible for Hekla's elongated ENE-WSW profile. Frequent large silicic explosive eruptions during historical time have deposited tephra throughout Iceland, providing valuable time markers used to date eruptions from other Icelandic volcanoes. Hekla tephras are generally rich in fluorine and are consequently very hazardous to grazing animals. Extensive lava flows from Hekla's historical eruptions, which date back to 1104 AD, cover much of the volcano's flanks.
Sources: Icelandic Meteorological Office http://en.vedur.is/, RUV http://www.ruv.is/frett/seismic-activity-in-mount-hekla
TUNGURAHUA Ecuador 1.467°S, 78.442°W; summit elev. 5023 m
IG reported that during 18-20 March seismicity at Tungurahua was high. Although cloud cover often prevented observations, steam-and-ash plumes were observed rising as high as 1 km above the crater. Slight ashfall was reported in Riobamba (30 km S) on 18 March. Seismicity declined on 21 March and continued to trend downward during 22-26 March. A small lahar descended the Chontapamba drainage (W) on 21 March. Steam plumes drifted W on 22 March, and were again observed during 25-26 March. A plume with low ash content rose 1 km above the crater on 24 March and drifted N. Slight roaring was reported from El Manzano (8 km SW).
Geologic Summary. The steep-sided Tungurahua stratovolcano towers more than 3 km above its northern base. It sits ~140 km S of Quito, Ecuador's capital city, and is one of Ecuador's most active volcanoes. Historical eruptions have all originated from the summit crater. They have been accompanied by strong explosions and sometimes by pyroclastic flows and lava flows that reached populated areas at the volcano's base. The last major eruption took place from 1916 to 1918, although minor activity continued until 1925. The latest eruption began in October 1999 and prompted temporary evacuation of the town of Baños on the N side of the volcano.
Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/
Ongoing Activity
BAGANA Bougainville 6.140°S, 155.195°E; summit elev. 1750 m
Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 25-26 March ash plumes from Bagana rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 45-55 km E.
Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. Bagana is a massive symmetrical lava cone largely constructed by an accumulation of viscous andesitic lava flows. The entire lava cone could have been constructed in about 300 years at its present rate of lava production. Eruptive activity at Bagana is characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50-m-thick with prominent levees that descend the volcano's flanks on all sides.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
BATU TARA Komba Island (Indonesia) 7.792°S, 123.579°E; summit elev. 748 m
Based on analyses of satellite imagery and wind data, the Darwin Volcanic Ash Advisory Centre (VAAC) reported that on 20 March ash plumes from Batu Tara drifted 110 km NW. During 21-26 March ash plumes rose to altitudes of 2.1-3 km (7,000-10,000 ft) a.s.l. and drifted 35-95 km SW, W, N, NW, and NE.
Geologic Summary. The small isolated island of Batu Tara in the Flores Sea about 50 km north of Lembata (formerly Lomblen) Island contains a scarp on the eastern side similar to the Sciara del Fuoco of Italy's Stromboli volcano. Vegetation covers the flanks of Batu Tara to within 50 m of the 748-m-high summit. Batu Tara lies north of the main volcanic arc and is noted for its potassic leucite-bearing basanitic and tephritic rocks. The first historical eruption from Batu Tara, during 1847-52, produced explosions and a lava flow.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
KARYMSKY Eastern Kamchatka (Russia) 54.05°N, 159.45°E; summit elev. 1536 m
KVERT reported that weak-to-moderate seismic activity at Karymsky was detected during 15-22 March. Satellite data showed a weak thermal anomaly on the volcano on 18 March. The Aviation Color Code remained at Orange.
Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed about 7,600-7,700 radiocarbon years ago. Construction of the Karymsky stratovolcano began about 2,000 years later. The latest eruptive period began about 500 years ago, following a 2,300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been Vulcanian or Vulcanian-Strombolian with moderate explosive activity and occasional lava flows from the summit crater. Most seismicity preceding Karymsky eruptions has originated beneath Akademia Nauk caldera, which is located immediately S of Karymsky volcano and erupted simultaneously with Karymsky in 1996.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
KILAUEA Hawaii (USA) 19.421°N, 155.287°W; summit elev. 1222 m
During 20-26 March HVO reported that the circulating lava lake periodically rose and fell in the deep pit within Kilauea's Halema'uma'u Crater. The plume from the vent continued to deposit variable amounts of ash, spatter, and Pele's hair onto nearby areas.
At Pu'u 'O'o Crater, glow emanated from four spatter cones on the crater floor. Lava flowed from the cone on the NE edge of the crater on 23 March, the first lava activity in the crater in a month. Two lava flows (Peace Day and Kahauale'a) were fed by lava tubes extending from Pu'u 'O'o. Multiple lava flows from the NE spatter cone, collectively called the Kahauale'a flow, traveled across the NE flank of Pu'u 'O'o cone to the cone's base and advanced more than 4.4 km NE over older flows. A branch also traveled S, just S of Pu'u Kahauale'a. Peace Day activity consisted of lava flows active above the pali (5 km SE of Pu'u 'O'o), on the pali, and on the coastal plain. Lava also entered the ocean at two main locations spanning the National Park boundary.
Geologic Summary. Kilauea, one of five coalescing volcanoes that comprise the island of Hawaii, is one of the world's most active volcanoes. Eruptions at Kilauea originate primarily from the summit caldera or along one of the lengthy E and SW rift zones that extend from the caldera to the sea. About 90% of the surface of Kilauea is formed of lava flows less than about 1,100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/
KIZIMEN Eastern Kamchatka (Russia) 55.130°N, 160.32°E; summit elev. 2376 m
KVERT reported that during 15-22 March moderate seismic activity continued at Kizimen. Video and satellite data showed that lava continued to extrude from the summit, producing summit incandescence, strong gas-and-steam activity, and hot avalanches on the W and E flanks. Satellite images detected a thermal anomaly over the volcano during 15-18 and 21 March. The Aviation Color Code remained at Orange.
Geologic Summary. Kizimen is an isolated, conical stratovolcano that is morphologically similar to Mount St. Helens prior to its 1980 eruption. The summit of Kizimen consists of overlapping lava domes, and blocky lava flows descend the flanks of the volcano, which is the westernmost of a volcanic chain north of Kronotsky volcano. The 2,376-m-high Kizimen was formed during four eruptive cycles beginning about 12,000 years ago and lasting 2,000-3,500 years. The largest eruptions took place about 10,000 and 8300-8400 years ago, and three periods of longterm lava-dome growth have occurred. The latest eruptive cycle began about 3,000 years ago with a large explosion and was followed by lava-dome growth lasting intermittently about 1,000 years. An explosive eruption about 1,100 years ago produced a lateral blast and created a 1.0 x 0.7 km wide crater breached to the NE, inside which a small lava dome (the fourth at Kizimen) has grown. A single explosive eruption, during 1927-28, has been recorded in historical time.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
LOKON-EMPUNG Sulawesi 1.358°N, 124.792°E; summit elev. 1580 m
According to a news article, an eruption from Lokon-Empung occurred on 20 March at 0757, producing an ash plume that rose 2 km above the crater.
Geologic Summary. The twin volcanoes Lokon and Empung, rising about 800 m above the plain of Tondano, are among the most active volcanoes of Sulawesi. Lokon, the higher of the two peaks (whose summits are only 2.2 km apart) has a flat, craterless top. The morphologically younger Empung volcano has a 400-m-wide, 150-m-deep crater that erupted last in the 18th century, but all subsequent eruptions have originated from Tompaluan, a 150 x 250 m wide double crater situated in the saddle between the two peaks. Historical eruptions have primarily produced small-to-moderate ash plumes that have occasionally damaged croplands and houses, but lava-dome growth and pyroclastic flows have also occurred.
Source: NewKerala http://www.newkerala.com/news/newsplus/worldnews-145301.html
PALUWEH Lesser Sunda Islands (Indonesia) 8.32°S, 121.708°E; summit elev. 875 m
Based on analyses of satellite imagery and wind data, the Darwin VAAC reported that during 19-21 and 24-26 March ash plumes from Paluweh rose to an altitude of 3 km (10,000 ft) a.s.l. and drifted 55-335 km SW, WSW, W, NW, and NE.
Geologic Summary. Paluweh volcano, also known as Rokatenda, forms the 8-km-wide island of Paluweh N of the volcanic arc that cuts across Flores Island. Although the volcano rises about 3,000 m above the sea floor, its summit reaches only 875 m above sea level. The broad irregular summit region contains overlapping craters up to 900 m wide and several lava domes. Several flank vents occur along a NW-trending fissure. The largest historical eruption of Paluweh occurred in 1928, when a strong explosive eruption was accompanied by landslide-induced tsunamis and lava-dome emplacement.
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
POPOCATEPETL México 19.023°N, 98.622°W; summit elev. 5426 m
CENAPRED reported that during 19-26 March seismicity at Popocatépetl indicated continuing gas-and-steam emissions that contained ash on most days. Incandescence from the crater was observed at night and increased in conjunction with emissions. During 19-20 March incandescent fragments were ejected 50 m from the crater and landed on the E flank. An explosion on 24 March ejected incandescent fragments 500 m away from the crater that again landed on the E flank. An ash plume rose 1.5 km and drifted E, causing ashfall in villages downwind. The Alert Level remained at Yellow, Phase Two.
Geologic Summary. Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5,426 m 70 km SE of Mexico City and is North America's second-highest volcano. Frequent historical eruptions have been recorded since the beginning of the Spanish colonial era. A small eruption on 21 December 1994 ended five decades of quiescence. Since 1996 small lava domes have incrementally been constructed within the summit crater and destroyed by explosive eruptions. Intermittent small-to-moderate gas-and-ash eruptions have continued, occasionally producing ashfall in neighboring towns and villages.
Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.gob.mx/es/
SAKURA-JIMA Kyushu 31.585°N, 130.657°E; summit elev. 1117 m
JMA reported that during 18-22 March nine explosions from Sakura-jima's Showa Crater were detected and ejected tephra fell at most 1.3 km from the crater.
Based on information from JMA, the Tokyo VAAC reported that explosions during 20-22 and 25 March generated ash plumes that rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted NE, E, and SE. A pilot observed an ash plume that drifted E at an altitude of 2.7 km (9,000 ft) a.s.l. on 20 March.
Geologic Summary. Sakura-jima, one of Japan's most active volcanoes, is a post-caldera cone of the Aira caldera at the northern half of Kagoshima Bay. Eruption of the voluminous Ito pyroclastic flow was associated with the formation of the 17 x 23-km-wide Aira caldera about 22,000 years ago. The construction of Sakura-jima began about 13,000 years ago and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kita-dake summit cone ended about 4,850 years ago, after which eruptions took place at Minami-dake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
Sources: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/index.html, Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html
SANTA MARIA Guatemala 14.756°N, 91.552°W; summit elev. 3772 m
INSIVUMEH reported that during 13-19 March explosions from Santa María's Santiaguito lava-dome complex produced ash plumes that rose as high as 4 km and drifted NE, E, S, SW, and W. Explosions were heard during 25-26 March. Avalanches from lava-flow fronts traveled down the flanks, and incandescence in the crater was observed on some nights. Ashfall was reported in El Faro (SW flank) and La Florida (5 km S) during 13-14 and 25-26 March, in Quetzaltenango (18 km WNW) during 17-18 March, and in San Jose on 19 March.
Geologic Summary. Symmetrical, forest-covered Santa María volcano is one of a chain of large stratovolcanoes that rises dramatically above the Pacific coastal plain of Guatemala. The stratovolcano has a sharp-topped, conical profile that is cut on the SW flank by a large, 1-km-wide crater, which formed during a catastrophic eruption in 1902 and extends from just below the summit to the lower flank. The renowned Plinian eruption of 1902 followed a long repose period and devastated much of SW Guatemala. The large dacitic Santiaguito lava-dome complex has been growing at the base of the 1902 crater since 1922. Compound dome growth at Santiaguito has occurred episodically from four westward-younging vents, accompanied by almost continuous minor explosions and periodic lava extrusion, larger explosions, pyroclastic flows, and lahars.
Source: Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/
SHIVELUCH Central Kamchatka (Russia) 56.653°N, 161.360°E; summit elev. 3283 m
Based on visual observations and analyses of satellite data, KVERT reported that during 15-22 March a viscous lava flow effused on the E flank of Shiveluch's lava dome, accompanied by hot avalanches, incandescence, and fumarolic activity. Satellite imagery showed a daily thermal anomaly on the lava dome. The Aviation Color Code remained at Orange.
Geologic Summary. The high, isolated massif of Shiveluch volcano (also spelled Sheveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group and forms one of Kamchatka's largest and most active volcanoes. The currently active Molodoy Shiveluch lava-dome complex was constructed during the Holocene within a large breached caldera formed by collapse of the massive late-Pleistocene Strary Shiveluch volcano. At least 60 large eruptions of Shiveluch have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Frequent collapses of lava-dome complexes, most recently in 1964, have produced large debris avalanches whose deposits cover much of the floor of the breached caldera. Intermittent explosive eruptions began in the 1990s from a new lava dome that began growing in 1980. The largest historical eruptions from Shiveluch occurred in 1854 and 1964.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
TOLBACHIK Central Kamchatka (Russia) 55.830°N, 160.330°E; summit elev. 3682 m
KVERT reported that the S fissure along the W side of Tolbachinsky Dol, a lava plateau on the SW side of Tolbachik, continued to produce very fluid lava flows during 15-22 March that traveled to the W, S, and E sides of the plateau. Cinder cones continued to grow along the fissure. Gas-and-ash plumes rose to an altitude of 3.5 km (11,500 ft) a.s.l. and drifted in multiple directions. A very large thermal anomaly on the N part of Tolbachinsky Dol was visible daily in satellite imagery. The Aviation Color Code remained at Orange.
Geologic Summary. The massive Tolbachik basaltic volcano is located at the southern end of the dominantly andesitic Kliuchevskaya volcano group. The Tolbachik massif is composed of two overlapping, but morphologically dissimilar volcanoes. The flat-topped Plosky Tolbachik shield volcano with its nested Holocene Hawaiian-type calderas up to 3 km in diameter is located east of the older and higher sharp-topped Ostry Tolbachik stratovolcano. The summit caldera at Plosky Tolbachik was formed in association with major lava effusion about 6500 years ago and simultaneously with a major southward-directed sector collapse of Ostry Tolbachik volcano. Lengthy rift zones extending NE and SSW of the volcano have erupted voluminous basaltic lava flows during the Holocene, with activity during the past two thousand years being confined to the narrow axial zone of the rifts. The 1975-76 eruption originating from the SSW-flank fissure system and the summit was the largest historical basaltic eruption in Kamchatka.
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
+++++++++++++++++++++++++++++++++++++ Sally Kuhn Sennert SI/USGS Weekly Volcanic Activity Report Editor Global Volcanism Program http://www.volcano.si.edu/reports/usgs/ Smithsonian Institution, National Museum of Natural History Department of Mineral Sciences, MRC-119 Washington, D.C., 20560 Phone: 202.633.1805Fax: 202.357.2476 |
__._,_.___
No comments:
Post a Comment