Monday, April 30, 2018

[californiadisasters] File - Abbreviations & Meanings

Here is a list of internet abreviations and their meanings which will help you to better understand what others are saying and will give you some abreviated options for commonly used expressions and terms.

AAR At any rate
AAR can also mean "After Action Report", used in emergency management fields
AAS Alive and smiling
ADN Any day now
AEAP As early as possible
AFAIK As far as I know
AFK Away from keyboard
AISB As it should be
AOTA All of the above
ASAP As soon as possible
AWOL Absent Without Leave
B4 Before
B4N Bye for now
BAK Back at keyboard
BAU Business as usual
BBIAF Be back in a few
BBIAM Be back in a minute
BBL Be back later
BC Because or variously, Battalion Chief
BCNU Be seein' you
BFN Bye for now
BOL Best of luck
BRB Be right back
BTA But then again
BTW By the way
CHAOS Chief Has Arrived On Scene
CMIIW Correct me if I'm wrong
CMON Come one
CT CalTrans (California Department of Transportation)
CU See you
CUA See you around
CUL See you later
CUL8R See you later
CWYL Chat with you later
CYO See you online
DC Division Chief
DEGT Don't even go there
DIKU Do I know you?
DQMOT Don't quote me on this
DTS Don't think so
EM Emergency Management
EMA E-mail address
EOM End of message
F2F Face to face
FISH First in, still here
FAMCL Falling of my chair laughing
FC Fire Captain
FD Fire Department
FITB Fill in the blank
FM Fire Marshall
FUBAR Fudged Up Beyond All Recognition
FWIW For what it's worth
FYI For your information
GA Go ahead
GAL Get a life
GB Goodbye
GFI Go for it
GG Gotta Go
GIAR Give it a rest
GMTA Great minds think alike
GOL Giggling out loud
GR&D Grinning, running and ducking
GTRM Going to read mail
HAGN Have a good night
HAGO Have a good one
HHIS Head hanging in shame
HRU How are you?
HTH Hope this helps
IAC In any case
IAP Incident Action Plan
IB I'm back
IC I see, or variously Incident Command
ICP Incident Command Post
ICBW It could be worse
ICS Incident Command System
ICT Incident Command Team (CALFIRE term)
IDK I don't know
IDTS I don't think so
IIRC If I remember correctly
ILU I love you
ILY I love you
IM Instant message
IMHO In my humble opinion
IMNSHO In my not so humble opinion
IMO In my opinion
IMT Incident Management Team (USFS term)
INAL I'm not a lawyer
IOW In other words
IRMC I rest my case
ITA I totally agree
IUSS If you say so
IYKWIM If you know what I mean
IYO In your opinion
IYSS If you say so
JAC Just a sec
JIK Just in case
JJA Just joking around
JK Just kidding
KOTC Kiss on the cheek
KNIM Know what I mean?
L8R Later
LD Later, dude
LE Law Enforcement
LEO Law Enforcement Officer
LMAO Laughing my a** off
LOL Laughing out loud
LTM Laugh to myself
LTNS Long time no see
MorF Male or female?
MUSM Miss you so much
NBD No big deal
NIMBY Not in my back yard
NMH Not much here
NOYB None of your business
NN Night-Night
NP No problem
NRN No response necessary
NW No way
OIC Oh, I see
OEM Office Of Emergency Management
OES Office of Emergency Services
OMG Oh my God
OO Over and out
OOTD One of these days
OTOH On the other hand
OTTOMH Off the top of my head
PD Police Department
PDQ Pretty darn quick
PLMK Please let me know
PIMP Peeing in my pants
PMFI Pardon me for interrupting
PMFJI Pardon me for jumping in
POAHF Put on a happy face
PTL Praise the Lord
PXT Please explain that
PU That stinks!
RL Real life
RME Rolling my eyes
ROTFL Rolling on the floor laughing
RSN Real soon now
SMHID Scratching my head in disbelief
SNAFU Situation Normal ~ All Fudged Up
SO Sheriff's Office
SOMY Sick of me yet?
SOS Same Old Shtuff
SOTMG Short of time, must go
SPST Same place, same time
SSDD Same stuff, different day
ST or S/T Strike Team
STW Search the Web
SUITM See you in the morning
SUL See you later
SUP What's up?
SYL See you later
TAFN That's all for now
TAM Tomorrow a.m.
TC Take care
THX Thanks
TIA Thanks in advance
TLK2UL8R Talk to you later
TMI Too much information
TMWFI Take my word for it
TPM Tomorrow p.m.
TPTB The powers that be
TSDMF Tears streaming down my face
TTFN Ta ta for now
TTTT These things take time
TTYL Talk to you later
TTYS Talk to you soon
TU Thank you
TY Thank you
TYT Take your time
TYVM Thank you very much
UGTBK You've got to be kidding
UW You're welcome
WAM Wait a minute
WAYF Where are you from?
WB Welcome back
WIIFM What's in it for me?
WTC World Trade Center
WTG Way to go
WTH What the heck?
WTSHTF When the s*** hits the fan
WU? What's up?
WUF? Where are you from?
WWJD What would Jesus do?
WWYC Write when you can
WYSIWYG What you see is what you get
YBS You'll be sorry
YGBKM You gotta be kidding me
YW You're welcome


------------------------------------

------------------------------------

Be sure to check out our Links Section at http://groups.yahoo.com/group/californiadisasters/links
Please join our Discussion Group at http://groups.yahoo.com/group/californiadisasters_discussion/ for topical but extended discussions started here or for less topical but nonetheless relevant messages.
------------------------------------

Yahoo Groups Links

<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/californiadisasters/

<*> Your email settings:
Individual Email | Traditional

<*> To change settings online go to:
http://groups.yahoo.com/group/californiadisasters/join
(Yahoo! ID required)

<*> To change settings via email:
californiadisasters-digest@yahoogroups.com
californiadisasters-fullfeatured@yahoogroups.com

<*> To unsubscribe from this group, send an email to:
californiadisasters-unsubscribe@yahoogroups.com

<*> Your use of Yahoo Groups is subject to:
https://info.yahoo.com/legal/us/yahoo/utos/terms/

[californiadisasters] File - Too Many Messages?

This group frequently has a HIGH MESSAGE VOLUME during major incidents.

If you feel you are getting too many messages, you can change your settings to receive less mail. Instead of receiving Individual Email, you can choose one of the following options:


Daily Digest:
This is the option to choose if you want to see all messages but limit the amount of email you receive. Yahoo will compile up to 25 group messages and send it in a single email to your inbox.
How to do this:
Go to <http://groups.yahoo.com/group/californiadisasters/join>
Under "Step 2. Message Delivery", select "Daily Digest". Scroll down and hit "Save Changes".


Special Notices:
You will not receive group emails except infrequent, important notices from the group moderators. You can still check the group messages on the group home page if you like but will not get them sent to your inbox.
Go to <http://groups.yahoo.com/group/californiadisasters/join>
Under "Step 2. Message Delivery", select "Special Notices". Scroll down and hit "Save Changes".

NOTE: Please do NOT select "Web Only"-- we want to be able to reach you via Special Notice when there are important notifications.

If you have any questions, you can contact the moderators by sending an email to <californiadisasters-owner@yahoogroups.com> and we will be happy to assist you.


Thanks!

The Moderating Team



------------------------------------

------------------------------------

Be sure to check out our Links Section at http://groups.yahoo.com/group/californiadisasters/links
Please join our Discussion Group at http://groups.yahoo.com/group/californiadisasters_discussion/ for topical but extended discussions started here or for less topical but nonetheless relevant messages.
------------------------------------

Yahoo Groups Links

<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/californiadisasters/

<*> Your email settings:
Individual Email | Traditional

<*> To change settings online go to:
http://groups.yahoo.com/group/californiadisasters/join
(Yahoo! ID required)

<*> To change settings via email:
californiadisasters-digest@yahoogroups.com
californiadisasters-fullfeatured@yahoogroups.com

<*> To unsubscribe from this group, send an email to:
californiadisasters-unsubscribe@yahoogroups.com

<*> Your use of Yahoo Groups is subject to:
https://info.yahoo.com/legal/us/yahoo/utos/terms/

[californiadisasters] File - California Disasters DISCUSSION GROUP

Extended discussion threads, chit-chat with other group members or slightly off-topic messages should be posted to the California Disasters DISCUSSION group, which can be found here:
http://groups.yahoo.com/group/californiadisasters_discussion/
All members are urged to join this sister-group and use it to post messages that are not relevant to the purpose of the main list.

Thank you,
Moderator


------------------------------------

------------------------------------

Be sure to check out our Links Section at http://groups.yahoo.com/group/californiadisasters/links
Please join our Discussion Group at http://groups.yahoo.com/group/californiadisasters_discussion/ for topical but extended discussions started here or for less topical but nonetheless relevant messages.
------------------------------------

Yahoo Groups Links

<*> To visit your group on the web, go to:
http://groups.yahoo.com/group/californiadisasters/

<*> Your email settings:
Individual Email | Traditional

<*> To change settings online go to:
http://groups.yahoo.com/group/californiadisasters/join
(Yahoo! ID required)

<*> To change settings via email:
californiadisasters-digest@yahoogroups.com
californiadisasters-fullfeatured@yahoogroups.com

<*> To unsubscribe from this group, send an email to:
californiadisasters-unsubscribe@yahoogroups.com

<*> Your use of Yahoo Groups is subject to:
https://info.yahoo.com/legal/us/yahoo/utos/terms/

[Volcano_Vista_HS] Daily Announcements Monday, April 30, 2018



Good Morning Hawks

 

Today is Monday, April 30, 2018

 

Please rise for the pledge

 

YEARBOOK: Yearbooks are here! Pre-ordered books may be picked up at the bookroom window at lunch today. If you did not pre-order, you can purchase a yearbook for $75, cash or money order in the activities office

 

VVHS DECA:

We wish to send a special thank you to our current officer team. With your dedication to the DECA Chapter we received international recognition for community service and were recognized as the best DECA Chapter in the state!! Seniors we will miss you and wish to thank you for leaving us in such great shape! 

 

Our current officer team wishes to congratulate the incoming leaders: 

 

Congratulations Austin Armoto, Darren Benson, Jaselen Martinez, Nevaeh Romero, Zachary-Josh Khieu, Sofia Gomez-Legarreta, Haley Gervasi, Dominic Chavez, Kylee Gary-Clayburgy, Veronica Gayoso and Aysha Hector!  We look forward to you bringing Volcano Vista more victories next year!

 

FROM THE LIBRARY:

Students, Starting today at lunch, the library will ONLY be open for book check in and payment of fines. Please make other arrangements for printing. Open period/CEC students please go to F226.  Also, seniors, all library books need to be turned in before Wednesday.

 

SENIORS!  Remember to order your final transcript.  If you order it on parchment.com please remember to mark hold for grades.  If you request by paper the form is located in the main office please write final on top and attach one dollar to your request.  Any additional questions please see Mrs. Ewing in the main office.

 

SENIORS!  Please return any library books you have checked out by TODAY.  Any lost books will have to be paid for before you graduate.

 

SENIORS: The fine list is posted. All fines need to be paid by May 8th in order to pick up your cap and gown. We have also posted a list of seniors that are missing their Next Step Plans. You will not graduate without this form. See Mr. O'Sullivan for more info.

 

ATHLETICS:

BOYS TENNIS:  

Congratulations to Alex K. for being the District 1 6A Boys Singles Tennis Champion, and Francis Bui for being the District 1 6A Boys Singles Tennis Runner Up. Both will be competing in state competition starting this Wednesday Good Luck, Let's Go!!!

 

 

Attention any boy interested in playing soccer for the 2018 season, there will be a soccer meeting at lunch on Wednesday, May 2 in room A102.  Make sure to attend.  If you are unable to attend, see Coach Thiebaut in A121 for the information.

 
SOFTBALL: plays RRHS at 4 today
 
That's all for your morning announcements Hawks. Have a great day.

And remember

As always

 

It's Great to be a Hawk




__._,_.___

Posted by: grangergang@ymail.com


For more information, go to our web site: http://www.volcanovistahawks.com




__,_._,___

Thursday, April 26, 2018

[ Volcano ] Kilauea Summit Eruption video now available online



*******************************************************************************************************
Kilauea Summit Eruption video now available online
*******************************************************************************************************


Kīlauea Summit Eruption | Lava Returns to Halemaʻumaʻu


 
A new documentary video about Kīlauea Volcano's current summit eruption, with behind-the-scenes imagery of publicly inaccessible areas, is available from the U.S. Geological Survey's Hawaiian Volcano Observatory.
 
The ongoing eruption began in March 2008, when a new volcanic vent opened within Halema'uma'u, a crater at the summit of Kīlauea in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi.
 
Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano's summit lava lake—now one of the two largest lava lakes in the world. The video begins with a Hawaiian chant that expresses traditional observations of an active lava lake and reflects the connections between science and culture that continue on Kīlauea today.
 
The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea's ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond.

 
Available online at:

USGS Multimedia Gallery
https://www.usgs.gov/media/videos/k-lauea-summit-eruption-lava-returns-halema-uma-u
YouTube
https://youtu.be/gNoJv5Vkumk
USGS Publications Warehouse (215MB, 1.1GB, and 2.9GB)
https://pubs.er.usgs.gov/publication/gip182
 

4K B-roll footage acquired during filming for the video is also available online:
https://www.usgs.gov/media/videos/k-lauea-volcano-halema-uma-u-crater-summit-vent-lava-lake-4k
 


Janet Babb
Geologist / Public Information
U.S. Geological Survey Hawaiian Volcano Observatory







__._,_.___


[ Volcano ]






__,_._,___

[ Volcano ] Smithsonian / USGS Weekly Volcanic Activity Report 13-19 September 2017



*******************************************************************************************************
Smithsonian / USGS Weekly Volcanic Activity Report 13-19 September 2017
*******************************************************************************************************


Sally Kuhn Sennert - Weekly Report Editor (kuhns@si.edu)
URL: http://www.volcano.si.edu/reports_weekly.cfm
 


 
New Activity/Unrest: Agung, Bali (Indonesia)  | Dieng Volcanic Complex, Central Java (Indonesia)  | Zhupanovsky, Eastern Kamchatka (Russia)
 
Ongoing Activity: Aira, Kyushu (Japan)  | Bezymianny, Central Kamchatka (Russia)  | Bogoslof, Fox Islands (USA)  | Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Fuego, Guatemala  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Klyuchevskoy, Central Kamchatka (Russia)  | Popocatepetl, Mexico  | Reventador, Ecuador  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  | Sinabung, Indonesia  | Turrialba, Costa Rica
 
 
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
 
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
 
 
 
New Activity/Unrest
 
 
Agung  | Bali (Indonesia)  | 8.342°S, 115.508°E  | Summit elev. 3142 m
 
Increased seismicity at Agung, as well as the severity of past eruptions, prompted PVMBG to raise the Alert Level to 2 (on a scale of 1-4). The report noted that volcanic earthquakes (VA) began to be recorded on 10 August and shallow volcanic earthquakes (VB) began to be recorded on 24 August. Local tectonic earthquakes were also recorded and began to increase consistently on 26 August. PVMBG warned the public to stay at least 3 km away from the crater. On 13 September a climber observed a sulfatara plume rising from the bottom of the crater as high as 50 m above the crater rim. During 14-18 September four earthquakes centered around Agung were felt. On 18 September PVMBG reported that the number of VA and VB events continued to increase; the Alert Level was increased to 3. The exclusion zone was increased to 6 km, with an additional expansion to 7.5 km in the N, SE, and SSW directions. Elevations above 950 m were also restricted.
 
A VEI 5 eruption during 1963-64 produced pyroclastic flows and lahars that caused extensive damage and resulted in more than 1,100 deaths.
 
Geologic Summary. Symmetrical Agung stratovolcano, Bali's highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means "Paramount," rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks of Agung extend to the coast. The 3142-m-high summit contains a steep-walled, 500-m-wide, 200-m-deep crater. The flank cone Pawon is located low on the SE side. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the world's largest of the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.
 
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/
 
 
Dieng Volcanic Complex  | Central Java (Indonesia)  | 7.2°S, 109.92°E  | Summit elev. 2565 m
 
PVMBG reported that during 8 July-14 September measurements indicated an increase in water temperature at Sileri Crater lake (Dieng Volcanic Complex) from 90.7 to 93.5 degrees Celsius. Soil temperatures also increased, from 58.6 to 69.4 degrees Celsius. At Timbang Crater temperatures in the lake increased from 57.3 to 62.7, and in the soil they decreased from 18.6 to 17.2. The report noted that conditions at Timbang Crater were normal. Temperature increases at Sileri, along with tremor detected during 13-14 September, prompted PVMBG to raise the Alert Level to 2 (on a scale of 1-4). PVMBG warned the public to stay at least 1 km away from the crater rim, and for residents living within that radius to evacuate.
 
Geologic Summary. The Dieng plateau in the highlands of central Java is renowned both for the variety of its volcanic scenery and as a sacred area housing Java's oldest Hindu temples, dating back to the 9th century CE. The Dieng volcanic complex consists of two or more stratovolcanoes and more than 20 small craters and cones of Pleistocene-to-Holocene age over a 6 x 14 km area. Prahu stratovolcano was truncated by a large Pleistocene caldera, which was subsequently filled by a series of dissected to youthful cones, lava domes, and craters, many containing lakes. Lava flows cover much of the plateau, but have not occurred in historical time, when activity has been restricted to minor phreatic eruptions. Toxic gas emissions are a hazard at several craters and have caused fatalities. The abundant thermal features and high heat flow make Dieng a major geothermal prospect.
 
Source: Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG, also known as CVGHM) http://www.vsi.esdm.go.id/
 
 
Zhupanovsky  | Eastern Kamchatka (Russia)  | 53.589°N, 159.15°E  | Summit elev. 2899 m
 
Based on visual observations, KVERT reported that on 17 September explosions at Zhupanovsky generated gas-and-steam plumes with small amounts of ash that rose to altitudes of 6-7 km (19,700-23,000 ft) a.s.l. and drifted 20 km SW. The Aviation Color Code was raised from Green to Orange, the second highest level on a 4-color scale. About 30 minutes later satellite images showed ash plumes drifting 10 km E. Later that day gas-and-steam plumes rose 4 km (13,100 ft) a.s.l. The Aviation Color Code was lowered to Yellow, and then on 20 September it was lowered to Green.
 
Geologic Summary. The Zhupanovsky volcanic massif consists of four overlapping stratovolcanoes along a WNW-trending ridge. The elongated volcanic complex was constructed within a Pliocene-early Pleistocene caldera whose rim is exposed only on the eastern side. Three of the stratovolcanoes were built during the Pleistocene, the fourth is Holocene in age and was the source of all of Zhupanovsky's historical eruptions. An early Holocene stage of frequent moderate and weak eruptions from 7000 to 5000 years before present (BP) was succeeded by a period of infrequent larger eruptions that produced pyroclastic flows. The last major eruption took place about 800-900 years BP. Historical eruptions have consisted of relatively minor explosions from the third cone.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Ongoing Activity
 
 
Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m
 
JMA reported that during 4-11 September there were 52 events detected at Showa Crater (at Aira Caldera's Sakurajima volcano), seven of which were explosive and ejected material as far as 500 m. Ash plumes rose as high as 2.4 km above the crater rim. Crater incandescence was observed most nights. The Alert Level remained at 3 (on a 5-level scale).
 
Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
 
Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/
 
 
Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit elev. 2882 m
 
KVERT reported that during 8-15 September a lava flow continued to move down the W flank of Bezymianny's dome, and incandescence from the dome was visible at night. A thermal anomaly was identified in satellite images during 8-9 and 12-13 September. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
 
Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Bogoslof  | Fox Islands (USA)  | 53.93°N, 168.03°W  | Summit elev. 150 m
 
AVO reported that during 13-19 September nothing significant was observed in partly to mostly cloudy satellite images of Bogoslof, and no activity was detected in seismic or infrasound data. Weakly elevated surface temperatures were identified in satellite images during 13-14 and 16-17 September, indicating ongoing unrest. On 17 September discolored ocean water was visible in satellite data, possibly representing outflow from the crater. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.
 
Geologic Summary. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.
 
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/
 
 
Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m
 
AVO reported that during 13-19 September nothing significant was observed in often cloudy satellite images and web camera views of Cleveland; elevated surface temperatures were identified in satellite images during 13-15 September and minor steaming was noted during 17-19 September. Nothing noteworthy was detected in seismic or infrasound data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.
 
Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.
 
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/
 
 
Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m
 
Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 13-16 and 18 September ash plumes from Dukono rose to altitudes of 1.8-2.1 km (6,000-7,000 ft) a.s.l. and drifted SW, W, and NW.
 
Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev. 1103 m
 
Based on observations by volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 13-14 September generated ash plumes that rose 2.2 km (7,200 ft) a.s.l. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
 
Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Fuego  | Guatemala  | 14.473°N, 90.88°W  | Summit elev. 3763 m
 
Based on INSIVUMEH notifications, CONRED reported that Fuego's ninth effusive eruption phase in 2017 began on 13 September. Explosions generated ash plumes that rose 1.2 km above the crater and drifted 15 km W and SW, causing ashfall in communities downwind including San Pedro Yepocapa (8 km N), El Porvenir (8 km ENE), and Sangre de Cristo (8 km WSW). Pyroclastic flows descended the Seca (Santa Teresa) ravine on the W flank. The eruptive phase ended about 35 hours later. INSIVUMEH noted that on 14 September, explosions generated ash plumes that rose 750 m and drifted 10 km W and SW. Shock waves from some explosions vibrated nearby structures. A lava flow was active in the Santa Teresa ravine. Explosions on 15 September produced ash plumes that rose as high as 750 m and drifted 5 km NW and SW. The lava flow was 300 m long. During 17-18 September ash plumes from explosions rose almost 1 km and drifted W and SW. Incandescent material was ejected 250 m above the crater rim, and caused avalanches of material around the crater area. Ashfall was reported in areas including Panimaché I and II (8 km SW), Morelia (9 km SW), and El Porvenir.
 
Geologic Summary. Volcán Fuego, one of Central America's most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala's former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.
 
Sources: Coordinadora Nacional para la Reducción de Desastres (CONRED) http://conred.gob.gt/;
Instituto Nacional de Sismologia, Vulcanologia, Meteorologia, e Hidrologia (INSIVUMEH) http://www.insivumeh.gob.gt/
 
 
Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m
 
Based on satellite data, KVERT reported that ash explosions at Karymsky occurred at 0420 on 20 September, producing an ash cloud that drifted 95-100 km NNE. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale).
 
Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m
 
During 13-19 September HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater and from a small lava pond in a pit on the W side of the crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Surface lava flows were active above and on the pali, and on the coastal plain. On 13 September geologists noted that several prominent cracks running parallel to the coastline had widened in the past two weeks, underscoring the potential for bench collapse into the sea.
 
Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.
 
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/
 
 
Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit elev. 4754 m
 
KVERT reported that on 8 September a weak thermal anomaly at Klyuchevskoy was identified in satellite images. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
 
Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Popocatepetl  | Mexico  | 19.023°N, 98.622°W  | Summit elev. 5426 m
 
Each day during 12-19 September CENAPRED reported 141-299 steam and gas emissions from Popocatépetl. Cloud cover often prevented observations, though gas-and-steam plumes were visible daily. During 12-13 September there were 22 explosions detected, four of which generated emissions with minor amounts of ash and ejected incandescent tephra. An explosion was detected at 1820 on 14 September. On 19 September a plume with low ash content rose 1 km. CENAPRED stated that there was no significant increase in activity at Popocatépetl related to the M 7.1 earthquake, centered beneath Puebla (45 km E), that occurred at 1314. The Alert Level remained at Yellow, Phase Two.
 
Geologic Summary. Volcán Popocatépetl, whose name is the Aztec word for smoking mountain, towers to 5426 m 70 km SE of Mexico City to form North America's 2nd-highest volcano. The glacier-clad stratovolcano contains a steep-walled, 400 x 600 m wide crater. The generally symmetrical volcano is modified by the sharp-peaked Ventorrillo on the NW, a remnant of an earlier volcano. At least three previous major cones were destroyed by gravitational failure during the Pleistocene, producing massive debris-avalanche deposits covering broad areas to the south. The modern volcano was constructed south of the late-Pleistocene to Holocene El Fraile cone. Three major plinian eruptions, the most recent of which took place about 800 CE, have occurred from Popocatépetl since the mid Holocene, accompanied by pyroclastic flows and voluminous lahars that swept basins below the volcano. Frequent historical eruptions, first recorded in Aztec codices, have occurred since precolumbian time.
 
Source: Centro Nacional de Prevencion de Desastres (CENAPRED) http://www.cenapred.unam.mx/es/
 
 
Reventador  | Ecuador  | 0.077°S, 77.656°W  | Summit elev. 3562 m
 
On 15 September, in a special report, IG summarized recent activity at Reventador noting lava flows during 24 June-1 July and 23-24 August, periods of frequent small explosions in August, and periods of explosions that were less frequent but moderate-to-large in size during July and September. Data indicated no changes in the internal and external activity of the volcano, suggesting that the eruption will continue with alternation of effusive and explosive activity in the next days to weeks.
 
Geologic Summary. Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.
 
Source: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/
 
 
Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m
 
Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya continued to decline; there was an average of 29 explosions recorded per day during 11-17 September. The earthquakes were dominated by long-period events and signals indicating emissions, with fewer numbers of hybrid events. Gas-and-ash plumes rose 2.5 km above the crater rim and drifted no more than 30 km E and SE. The MIROVA system detected one thermal anomaly. The report warned the public not to approach the crater within a 12-km radius.
 
Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
 
Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/;
Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/
 
 
Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m
 
KVERT reported that a thermal anomaly over Sheveluch was identified daily in satellite images during 8-15 September. Several explosive events during 8-13 September generated ash plumes that rose 9-10 km (29,500-32,800 ft) a.s.l. and drifted about 400 km NW, E, and SE. The Aviation Color Code remained at Orange.
 
Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m
 
Based on observations by PVMBG, webcam and satellite images, and model data, the Darwin VAAC reported that during 13-16 and 18 September ash plumes from Sinabung rose 3-7.5 km (12,000-18,000 ft) a.s.l. and sometimes drifted ESE, SE, SW.
 
Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m
 
OVSICORI-UNA reported that events at Turrialba at 1555 on 13 September and 0600 on 14 September generated plumes that rose 300 m above the crater rim and drifted NW and W. Another event at 0703 on 18 September produced a plume that rose 400 m.
 
Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.
 
Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/






__._,_.___


[ Volcano ]






__,_._,___

[ Volcano ] Smithsonian / USGS Weekly Volcanic Activity Report 30 August-5 September 2017



*******************************************************************************************************
Smithsonian / USGS Weekly Volcanic Activity Report 30 August-5 September 2017
*******************************************************************************************************


Sally Kuhn Sennert - Weekly Report Editor (kuhns@si.edu)
URL: http://www.volcano.si.edu/reports_weekly.cfm
 
 
New Activity/Unrest: Ambrym, Vanuatu  | Fernandina, Ecuador  | Nevados de Chillan, Chile  | Sangay, Ecuador
 
Ongoing Activity: Aira, Kyushu (Japan)  | Bagana, Bougainville (Papua New Guinea)  | Bezymianny, Central Kamchatka (Russia)  | Bogoslof, Fox Islands (USA)  | Cleveland, Chuginadak Island (USA)  | Dukono, Halmahera (Indonesia)  | Ebeko, Paramushir Island (Russia)  | Karymsky, Eastern Kamchatka (Russia)  | Kilauea, Hawaiian Islands (USA)  | Klyuchevskoy, Central Kamchatka (Russia)  | Langila, New Britain (Papua New Guinea)  | Manam, Papua New Guinea  | Nishinoshima, Japan  | Sabancaya, Peru  | Sheveluch, Central Kamchatka (Russia)  | Sinabung, Indonesia  | Suwanosejima, Ryukyu Islands (Japan)  | Turrialba, Costa Rica  | Ulawun, New Britain (Papua New Guinea)
 
 
The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the US Geological Survey's Volcano Hazards Program. Updated by 2300 UTC every Wednesday, notices of volcanic activity posted on these pages are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth's volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the "Criteria and Disclaimers" section. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.
 
Note: Many news agencies do not archive the articles they post on the Internet, and therefore the links to some sources may not be active. To obtain information about the cited articles that are no longer available on the Internet contact the source.
 
 
 
New Activity/Unrest
 
 
Ambrym  | Vanuatu  | 16.25°S, 168.12°E  | Summit elev. 1334 m
 
On 30 August the Vanuatu Geohazards Observatory (VGO) reported that "drastic changes" at Ambrym prompted an increase in the Alert Level from 2 to 3 (on a scale of 0-5). Areas deemed hazardous were near and around the active vents (Benbow, Maben-Mbwelesu, Niri-Mbwelesu and Mbwelesu), and in downwind areas prone to ashfall. According to a news article, a representative of VGO indicated that the Alert Level change was based on increased seismicity detected since the beginning of August but which became more notable on 25 August. Since monitoring of the volcano started around 20 years ago, the Alert Level had never been elevated past 2.
 
Geologic Summary. Ambrym, a large basaltic volcano with a 12-km-wide caldera, is one of the most active volcanoes of the New Hebrides arc. A thick, almost exclusively pyroclastic sequence, initially dacitic, then basaltic, overlies lava flows of a pre-caldera shield volcano. The caldera was formed during a major plinian eruption with dacitic pyroclastic flows about 1900 years ago. Post-caldera eruptions, primarily from Marum and Benbow cones, have partially filled the caldera floor and produced lava flows that ponded on the caldera floor or overflowed through gaps in the caldera rim. Post-caldera eruptions have also formed a series of scoria cones and maars along a fissure system oriented ENE-WSW. Eruptions have apparently occurred almost yearly during historical time from cones within the caldera or from flank vents. However, from 1850 to 1950, reporting was mostly limited to extra-caldera eruptions that would have affected local populations.
 
Sources: Vanuatu Geohazards Observatory http://www.geohazards.gov.vu/;
Radio New Zealand http://www.radionz.co.nz/international/programmes/datelinepacific/audio/201857030/danger-zone-around-vanuatu-volcano-could-be-increased
 
 
Fernandina  | Ecuador  | 0.37°S, 91.55°W  | Summit elev. 1476 m
 
IG reported that increased seismicity at Fernandina was detected at around 0955 on 4 September. Based on accounts from Galapagos Park personnel and photos of the volcano, an eruption started at around 1225. The Washington VAAC reported that lava was detected in satellite images beginning at 1230; a steam-and-gas plume rose 2.4 km (8,000 ft) a.s.l. and drifted almost 60 km W. At around 1428 IG noted that an eruptive plume was identified in satellite images rising 4 km above the crater and drifting NW. The VAAC reported that on 5 September a plume likely composed of sulfur dioxide and water vapor, and possibly some ash, rose to 2.4 km (8,000 ft) a.s.l. and drifted SW. There are no residents on Fernandina.
 
Geologic Summary. Fernandina, the most active of Galápagos volcanoes and the one closest to the Galápagos mantle plume, is a basaltic shield volcano with a deep 5 x 6.5 km summit caldera. The volcano displays the classic "overturned soup bowl" profile of Galápagos shield volcanoes. Its caldera is elongated in a NW-SE direction and formed during several episodes of collapse. Circumferential fissures surround the caldera and were instrumental in growth of the volcano. Reporting has been poor in this uninhabited western end of the archipelago, and even a 1981 eruption was not witnessed at the time. In 1968 the caldera floor dropped 350 m following a major explosive eruption. Subsequent eruptions, mostly from vents located on or near the caldera boundary faults, have produced lava flows inside the caldera as well as those in 1995 that reached the coast from a SW-flank vent. Collapse of a nearly 1 cu km section of the east caldera wall during an eruption in 1988 produced a debris-avalanche deposit that covered much of the caldera floor and absorbed the caldera lake.
 
Sources: Instituto Geofísico-Escuela Politécnica Nacional (IG) http://www.igepn.edu.ec/;
Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html
 
 
Nevados de Chillan  | Chile  | 36.863°S, 71.377°W  | Summit elev. 3212 m
 
Based on webcam views, Volcanes de Chile reported that an eruption at Nevados de Chillán occurred around 0925 on 30 August.
 
Geologic Summary. The compound volcano of Nevados de Chillán is one of the most active of the Central Andes. Three late-Pleistocene to Holocene stratovolcanoes were constructed along a NNW-SSE line within three nested Pleistocene calderas, which produced ignimbrite sheets extending more than 100 km into the Central Depression of Chile. The largest stratovolcano, dominantly andesitic, Cerro Blanco (Volcán Nevado), is located at the NW end of the group. Volcán Viejo (Volcán Chillán), which was the main active vent during the 17th-19th centuries, occupies the SE end. The new Volcán Nuevo lava-dome complex formed between 1906 and 1945 between the two volcanoes and grew to exceed Volcán Viejo in elevation. The Volcán Arrau dome complex was constructed SE of Volcán Nuevo between 1973 and 1986 and eventually exceeded its height.
 
Source: Volcanes de Chile https://www.volcanesdechile.net/
 
 
Sangay  | Ecuador  | 2.005°S, 78.341°W  | Summit elev. 5286 m
 
Based on satellite and model data, and information from the Guayaquil MWO, the Washington VAAC reported that ash plumes from Sangay rose to altitudes of 6.1-8.5 km (20,000-28,000 ft) a.s.l. The plumes drifted NW on 2 September.
 
Geologic Summary. The isolated Sangay volcano, located east of the Andean crest, is the southernmost of Ecuador's volcanoes, and its most active. The dominantly andesitic volcano has been in frequent eruption for the past several centuries. The steep-sided, 5230-m-high glacier-covered volcano grew within horseshoe-shaped calderas of two previous edifices, which were destroyed by collapse to the east, producing large debris avalanches that reached the Amazonian lowlands. The modern edifice dates back to at least 14,000 years ago. It towers above the tropical jungle on the east side; on the other sides flat plains of ash have been sculpted by heavy rains into steep-walled canyons up to 600 m deep. The earliest report of a historical eruption was in 1628. More or less continuous eruptions were reported from 1728 until 1916, and again from 1934 to the present. The almost constant activity has caused frequent changes to the morphology of the summit crater complex.
 
Source: Washington Volcanic Ash Advisory Center (VAAC) http://www.ssd.noaa.gov/VAAC/messages.html
 
 
Ongoing Activity
 
 
Aira  | Kyushu (Japan)  | 31.593°N, 130.657°E  | Summit elev. 1117 m
 
JMA reported that six explosive events at Showa Crater (at Aira Caldera's Sakurajima volcano) during 28 August-4 September ejected material as far as 800 m. Ash plumes rose as high as 2.2 km above the crater rim. Crater incandescence was observed at night. The Alert Level remained at 3 (on a 5-level scale).
 
Geologic Summary. The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan's most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu's largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.
 
Source: Japan Meteorological Agency (JMA) http://www.jma.go.jp/jma/
 
 
Bagana  | Bougainville (Papua New Guinea)  | 6.137°S, 155.196°E  | Summit elev. 1855 m
 
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 31 August ash plumes from Bagana rose to an altitude of 2.1 km (7,000 ft) a.s.l. and drifted N, W, and SW.
 
Geologic Summary. Bagana volcano, occupying a remote portion of central Bougainville Island, is one of Melanesia's youngest and most active volcanoes. This massive symmetrical cone was largely constructed by an accumulation of viscous andesitic lava flows. The entire edifice could have been constructed in about 300 years at its present rate of lava production. Eruptive activity is frequent and characterized by non-explosive effusion of viscous lava that maintains a small lava dome in the summit crater, although explosive activity occasionally producing pyroclastic flows also occurs. Lava flows form dramatic, freshly preserved tongue-shaped lobes up to 50 m thick with prominent levees that descend the flanks on all sides.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Bezymianny  | Central Kamchatka (Russia)  | 55.972°N, 160.595°E  | Summit elev. 2882 m
 
KVERT reported that during 28-30 August a thermal anomaly over Bezymianny was identified in satellite images. A lava flow continued to flow down the W flank of the dome; incandescence from the dome was visible at night. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
 
Geologic Summary. Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Bogoslof  | Fox Islands (USA)  | 53.93°N, 168.03°W  | Summit elev. 150 m
 
AVO reported that an explosive event at Bogoslof began at 0405 on 30 August and continued intermittently until 0555; the event produced a low-level ash plume that rose to around 6.1 km (20,000 ft) a.s.l. and drifted SSE. Later that day seismic and infrasound data showed quiet conditions, and a low-level plume (likely steam) drifted almost 65 km SSE. Satellite, infrasound, and seismic data showed nothing notable during 31 August-5 September. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.
 
Geologic Summary. Bogoslof is the emergent summit of a submarine volcano that lies 40 km north of the main Aleutian arc. It rises 1500 m above the Bering Sea floor. Repeated construction and destruction of lava domes at different locations during historical time has greatly modified the appearance of this "Jack-in-the-Box" volcano and has introduced a confusing nomenclature applied during frequent visits of exploring expeditions. The present triangular-shaped, 0.75 x 2 km island consists of remnants of lava domes emplaced from 1796 to 1992. Castle Rock (Old Bogoslof) is a steep-sided pinnacle that is a remnant of a spine from the 1796 eruption. Fire Island (New Bogoslof), a small island located about 600 m NW of Bogoslof Island, is a remnant of a lava dome that was formed in 1883.
 
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/
 
 
Cleveland  | Chuginadak Island (USA)  | 52.825°N, 169.944°W  | Summit elev. 1730 m
 
AVO reported that elevated surface temperatures at Cleveland were identified in satellite data during 29-30 August and 4-5 September; cloudy weather sometimes prevented satellite and webcam observations. Small vapor plumes from the summit was observed in webcam images during 30-31 August. Nothing noteworthy was detected in seismic or infrasound data. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.
 
Geologic Summary. Beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Cleveland is joined to the rest of Chuginadak Island by a low isthmus. The 1730-m-high Mount Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name for Mount Cleveland, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.
 
Source: US Geological Survey Alaska Volcano Observatory (AVO) http://www.avo.alaska.edu/
 
 
Dukono  | Halmahera (Indonesia)  | 1.693°N, 127.894°E  | Summit elev. 1229 m
 
Based on analyses of satellite imagery, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 30 August-1 September and 3-5 September ash plumes from Dukono rose to altitudes of 1.5-2.4 km (5,000-8,000 ft) a.s.l. and drifted SW, W, and NW.
 
Geologic Summary. Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia's most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Ebeko  | Paramushir Island (Russia)  | 50.686°N, 156.014°E  | Summit elev. 1103 m
 
Based on observations by volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, explosions during 28-29 August generated ash plumes that rose as high as 2.2 km (7,200 ft) a.s.l. Minor amounts of ash fell in Severo-Kurilsk on 28 April. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).
 
Geologic Summary. The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Karymsky  | Eastern Kamchatka (Russia)  | 54.049°N, 159.443°E  | Summit elev. 1513 m
 
KVERT noted gas-and-steam emissions at Karymsky since 12 August. The Aviation Color Code was lowered to Yellow (the second lowest level on a four-color scale) on 30 August.
 
Geologic Summary. Karymsky, the most active volcano of Kamchatka's eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Kilauea  | Hawaiian Islands (USA)  | 19.421°N, 155.287°W  | Summit elev. 1222 m
 
During 30 August-5 September HVO reported that the lava lake continued to rise, fall, and spatter in Kilauea's Overlook crater. Webcams recorded incandescence from long-active sources within Pu'u 'O'o Crater. The 61G lava flow, originating from a vent on Pu'u 'O'o Crater's E flank, continued to enter the ocean at Kamokuna. Surface lava flows were active above the pali and on the coastal plain. Slumping of seaward portions of the delta continued, and cracks running parallel to the coastline continued to widen. HVO warned of the potential for larger-scale delta collapses.
 
Geologic Summary. Kilauea volcano, which overlaps the east flank of the massive Mauna Loa shield volcano, has been Hawaii's most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano's surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 sq km, destroying nearly 200 houses and adding new coastline to the island.
 
Source: US Geological Survey Hawaiian Volcano Observatory (HVO) http://hvo.wr.usgs.gov/
 
 
Klyuchevskoy  | Central Kamchatka (Russia)  | 56.056°N, 160.642°E  | Summit elev. 4754 m
 
Based on satellite data, KVERT reported that ash plumes from explosions at Klyuchevskoy rose 6 km (19,700 ft) a.s.l. and drifted 550 km in multiple directions during 24-25 and 30 August. On 6 September KVERT noted that activity had decreased and that there was snow on the flanks; ash emissions were last observed on 30 August. The Aviation Color Code was lowered to Yellow (the second lowest level on a four-color scale).
 
Geologic Summary. Klyuchevskoy (also spelled Kliuchevskoi) is Kamchatka's highest and most active volcano. Since its origin about 6000 years ago, the beautifully symmetrical, 4835-m-high basaltic stratovolcano has produced frequent moderate-volume explosive and effusive eruptions without major periods of inactivity. It rises above a saddle NE of sharp-peaked Kamen volcano and lies SE of the broad Ushkovsky massif. More than 100 flank eruptions have occurred during the past roughly 3000 years, with most lateral craters and cones occurring along radial fissures between the unconfined NE-to-SE flanks of the conical volcano between 500 m and 3600 m elevation. The morphology of the 700-m-wide summit crater has been frequently modified by historical eruptions, which have been recorded since the late-17th century. Historical eruptions have originated primarily from the summit crater, but have also included numerous major explosive and effusive eruptions from flank craters.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Langila  | New Britain (Papua New Guinea)  | 5.525°S, 148.42°E  | Summit elev. 1330 m
 
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 1-2 September ash plumes from Langila rose 1.8 km (6,000 ft) a.s.l. and drifted N and NW.
 
Geologic Summary. Langila, one of the most active volcanoes of New Britain, consists of a group of four small overlapping composite basaltic-andesitic cones on the lower eastern flank of the extinct Talawe volcano. Talawe is the highest volcano in the Cape Gloucester area of NW New Britain. A rectangular, 2.5-km-long crater is breached widely to the SE; Langila volcano was constructed NE of the breached crater of Talawe. An extensive lava field reaches the coast on the north and NE sides of Langila. Frequent mild-to-moderate explosive eruptions, sometimes accompanied by lava flows, have been recorded since the 19th century from three active craters at the summit of Langila. The youngest and smallest crater (no. 3 crater) was formed in 1960 and has a diameter of 150 m.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Manam  | Papua New Guinea  | 4.08°S, 145.037°E  | Summit elev. 1807 m
 
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that on 2 September an ash plume from Manam rose 2.1 km (7,000 ft) a.s.l. and drifted NNW.
 
Geologic Summary. The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country's most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These "avalanche valleys" channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island's shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Nishinoshima  | Japan  | 27.247°N, 140.874°E  | Summit elev. 25 m
 
The Japan Coast Guard reported that visual observations of Nishinoshima from an aircraft during the afternoon of 11 August suggested that the eruption was continuing; a high temperature area at the ocean entry on the W flank and a steam plume indicated flowing lava. Lava in the central crater could not be confirmed; a small fumarolic emission rose from the crater's edge. Observations on the afternoon of 24 August suggested no lava flowing into the ocean.
 
Geologic Summary. The small island of Nishinoshima was enlarged when several new islands coalesced during an eruption in 1973-74. Another eruption that began offshore in 2013 completely covered the previous exposed surface and enlarged the island again. Water discoloration has been observed on several occasions since. The island is the summit of a massive submarine volcano that has prominent satellitic peaks to the S, W, and NE. The summit of the southern cone rises to within 214 m of the sea surface 9 km SSE.
 
Source: Japan Coast Guard http://www.kaiho.mlit.go.jp/index.html
 
 
Sabancaya  | Peru  | 15.787°S, 71.857°W  | Summit elev. 5960 m
 
Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosive activity at Sabancaya was similar to the previous week; there was an average of 44 explosions recorded per day during 28 August-3 September. The earthquakes were dominated by long-period signals, with fewer numbers of hybrid events and signals indicating emissions. Gas-and-ash plumes rose 3.2 km above the crater rim and drifted no more than 40 km SE and S. The MIROVA system detected five thermal anomalies. The report warned the public not to approach the crater within a 12-km radius.
 
Geologic Summary. Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning "tongue of fire" in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.
 
Sources: Instituto Geológico Minero y Metalúrgico (INGEMMET) http://www.ingemmet.gob.pe/;
Instituto Geofísico del Perú (IGP) http://www.igp.gob.pe/
 
 
Sheveluch  | Central Kamchatka (Russia)  | 56.653°N, 161.36°E  | Summit elev. 3283 m
 
KVERT reported that a thermal anomaly over Sheveluch was identified daily in satellite images during 25 August-1 September. The Aviation Color Code remained at Orange.
 
Geologic Summary. The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 cu km volcano is one of Kamchatka's largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.
 
Source: Kamchatkan Volcanic Eruption Response Team (KVERT) http://www.kscnet.ru/ivs/kvert/index_eng.php
 
 
Sinabung  | Indonesia  | 3.17°N, 98.392°E  | Summit elev. 2460 m
 
Based on observations by PVMBG and the Jakarta MWO, satellite images, and wind data, the Darwin VAAC reported that during 31 August-1 September ash plumes from Sinabung rose 3.3-4 km (11,000-13,000 ft) a.s.l. and drifted WSW, NW, and ENE.
 
Geologic Summary. Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/
 
 
Suwanosejima  | Ryukyu Islands (Japan)  | 29.638°N, 129.714°E  | Summit elev. 796 m
 
Based on JMA notices and satellite-image analyses, the Tokyo VAAC reported explosions during 30 August-2 September.
 
Geologic Summary. The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan's most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.
 
Source: Tokyo Volcanic Ash Advisory Center (VAAC) http://ds.data.jma.go.jp/svd/vaac/data/vaac_list.html
 
 
Turrialba  | Costa Rica  | 10.025°N, 83.767°W  | Summit elev. 3340 m
 
OVSICORI-UNA reported that an event at Turrialba at 0820 on 5 September generated a plume that rose 400 m above the crater rim and drifted NW. Another event at 1550 that same day produced a plume that rose 500 m and drifted SW.
 
Geologic Summary. Turrialba, the easternmost of Costa Rica's Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive 3340-m-high Turrialba is exceeded in height only by Irazú, covers an area of 500 sq km, and is one of Costa Rica's most voluminous volcanoes. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.
 
Source: Observatorio Vulcanologico y Sismologico de Costa Rica-Universidad Nacional (OVSICORI-UNA) http://www.ovsicori.una.ac.cr/
 
 
Ulawun  | New Britain (Papua New Guinea)  | 5.05°S, 151.33°E  | Summit elev. 2334 m
 
Based on analyses of satellite imagery and model data, the Darwin VAAC reported that during 31 August-1 September and 5 September ash plumes from Ulawun rose to an altitude of 2.7 km (9,000 ft) a.s.l. and drifted SW, W, NW, and N.
 
Geologic Summary. The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea's most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W-trending escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.
 
Source: Darwin Volcanic Ash Advisory Centre (VAAC) ftp://ftp.bom.gov.au/anon/gen/vaac/






__._,_.___


[ Volcano ]






__,_._,___