Tuesday, January 28, 2014

Re: [Geology2] More Antipodal Theory -- Rapid Surface Movement

Dear Eman,

Thank you for taking the time to address the explanations that I wrote regarding the general topic of rapid surface movement.

I would agree that much of what I write about could not occur under ordinary circumstances. However, I do believe that under conditions of extreme vibration and angular directed force (imagine the impact object coming in from the northeast at an angle of 35 degrees to vertical), the top layers near the edge of a tectonic plate could be moved into another position on that same plate.

Yes, there would be much spalling and delaminating and frictional release due to extreme vibration and liquified rock at the faces of the slipping points, but I believe that it would be possible.

This movement would explain the 30 degree south latitude markers in the lava of the Deccan traps, as noted by Dr. Hetu Sheth. If the original Chicxulub impact started at 30 degrees north and skidded to a point near its present location at 21 degrees north, the result would explain the 30 degree south lava at the Deccan traps without resorting to polar wander.

This movement would also explain the strange Central Atlantic Magmatic Province (CAMP) basalt area found in the Yucatan, so far away any other easily explainable CAMP areas. There is a nice, big CAMP basalt area located right in the lower Alabama, Georgia and Florida panhandle area that is likely the origin of this wayward Yucatan piece (see 2002 AGU monograph by J. Gregory McHone, especially the map on page 2).

This Chicxulub movement would also be consistent with the note "The tectonic trend links the Yucatan Peninsula to Florida, across the SE Gulf of Mexico." by  Keith H. James of the Institute of Geography and Earth Sciences at the University of Wales in his article "The Caribbean Ocean Plateau."

If you subscribe to the theory that the Caribbean Large Igneous Province  was created by the pulling away from the South American plate by the North American plate (which I do; see "the Caribbean Ocean Plateau" cited earlier), then there would not be so much resistance to some movement of a part of the North American plate back into that area.

It may appear that I am hypothesizing activities that are geologically impossible, but I believe that the frictional release allowed by the great earthquakes that would accompany a large impact would change the game. When this intense directional pressure and extreme vibration is combined with the liquefaction at slip surfaces under great pressure, there would be opportunities for significant movement through delamination of surface sections of a tectonic plate.

Several recent articles discuss the ways in which movement of slipping surfaces  under pressure can cause liquefaction at that surface and aid in the continuation of that movement.

On page 1380 of www.sciencemag.com in 22013, authors Lingling Le and Thorne Lay of the Department of Earth and Planetary Sciences at the University of California, Santa Cruz; Hiroo Kanamori of the Seismological Laboratory at the California Institute of Technology and Keith D. Koper of the Department of Geology and Geophysics of the University of Utah state: "Once deep fault slip initiates and becomes substantial, frictional heating can lead to melting of the fault surface, abetting runaway rupture expansion for large deep earthquakes." Obviously an impact is not a deep earthquake, but it could simulate the extreme pressures.

Adrian P. Jones and G. David Price of the Dept. of Geological Sciences, University College London wrote a piece entitled "Impact-induced decompression melting: A possible trigger for volcanism and mantle hotspots?" In this article, they suggest that not only has the degree of melting by a large impact been greatly underestimated, but that it may be sufficient to produce a plume or hotspot at the impact site. My theory looks positively tame compared to this.


You mention that the asteroid Vesta has a bulge at the antipode of a large crater. The bulge is only about 10% of the size of the crater.

Actually, there is a similar situation on the planet Mercury, where the giant Caloris crater has an uplifted area the size of France and Germany at its antipode (roughly 10% here, too) as reported by Dr. Michael Martin-Smith.

There are also reports of similar situations on the planet Mars by David and Charles Webber.

All of these situations are significantly different from Earth, because these bodies are made of solid, hardened rock. In contrast, Earth is much more of a hydraulic system, with molten and semi-molten rock allowing a much more effective transfer of energy.


You also bring up the point that some volcanism in the area of the Deccan traps is older than 65 MYA.

Gerta Keller of the Department of Geosciences at Princeton University wrote an article entitled "The Cretaceous-Tertiary Mass Extinction, Chicxulub Impact and Deccan Volcanism." The paper asserts that there was a small amount of volcanism in the area of the Deccan traps 67.5 MYA, but the huge, main phase of volcanism began later and ended coincident with the KT boundary. Furthermore, the Chicxulub impact predates the KT boundary by about 300,000 years.

Other sources tell us that the Deccan traps erupted without abatement for 100,000 years and intermittently for tens of thoiusands of years afterwards.

In other words, it was the persistent Deccan volcanism that went on and on after the Chicxulub impact that did the primary damage. Yes, there was some minor volcanism in that area two and a half million years before the Chicxulub impact, but it was unrelated to the extinction and it was probably unrelated to the huge Deccan trap volcanic event, itself.

I realize that much of what I am proposing is outside of standard accepted theory. It is quite helpful for me to understand where the differences are, so that I can either highlight these differences appropriately or adjust or even abandon parts of my theory as needed.

Thank you for helping me with this.


Ben Fishler

From: MEM <mstreman53@yahoo.com>
To: "geology2@yahoogroups.com" <geology2@yahoogroups.com>
Sent: Monday, January 27, 2014 3:11 PM
Subject: Re: [Geology2] More Antipodal Theory -- Rapid Surface Movement

Dear Ben,  I can't get into this debate other than this exception.  One I just don't think it represents real world physics and is moot for me and two: I am very occupied presently and can't provide detailed answers addressing a play by play of your examples, sorry if I leave out any major points-- but the gist is that "surfaces" (sic)( assuming you mean continental masses) don't move without the plate on which they are affixed to so move. They are rooted/fixed to the slab and don't move independently.   So ANY argument about surface moving by itself is disproved and the theory falls down.  In the past I referred you to the Wilson Cycle Series at James Mason University online but I don't see that this was incorporated in your latest posting.


Your email settings: Individual Email|Traditional
Change settings via the Web (Yahoo! ID required)
Change settings via email: Switch delivery to Daily Digest | Switch to Fully Featured
Visit Your Group | Yahoo! Groups Terms of Use | Unsubscribe


No comments:

Post a Comment